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Information content of multitime correlation functions for the interpretation
of structural relaxation in glass-forming systems

Andreas Heuer
Max-Planck-Institut fu¨r Polymerforschung, Postfach 3148, D-55021 Mainz, Germany

~Received 23 May 1996!

In recent experiments four-time correlation functions have been systematically measured for a polymer near
the glass transition via methods of multidimensional NMR@A. Heueret al., Phys. Rev. Lett.75, 2851~1995!#.
In this paper a theoretical analysis of the information content of multitime correlation functions is presented.
Having in mind a heterogeneous distribution of relaxation rates, it is demonstrated that multitime correlation
functions contain information about temporal fluctuations within the heterogenous distribution. If the relax-
ation rate distribution is bimodal, the additional information content of the four-time correlation function as
compared to the two-time correlation function is given by the exchange rate between both dynamical states.
More generally, for arbitrary rate distributions the additional information content of multitime correlation
functions can be, to a good approximation, expressed by a single dimensionless parameterQ. This parameter
is a measure for the fluctuations within the heterogeneous distribution. It is denotedrate memory parameter. It
is argued that its value is related to the cooperativity of the dynamics.@S1063-651X~97!08307-4#

PACS number~s!: 61.43.Fs, 02.50.2r, 05.40.1j, 61.20.Lc
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I. INTRODUCTION

The glass transition is often characterized by proper
of two-time correlation functions such as the densi
density correlation function ^ f (t0 ,t1)& with f (t0 ,t1)
5cos$k@x(t0)2x(t1)#% @1,2# wherex(t) denotes the position
of the individual molecules at timet and the angular bracket
denote the ensemble average. The rate distribution of tha
relaxation, which may have a width of several decades,
be extracted from such observables. The properties of
rate distribution have been analyzed extensively@3,4#. In
NMR experiments one often usesf (t0 ,t1)5cos$tp
3@v(t0)2v(t1)#% wheretp is an experimentally adjustabl
time andv(t) the angular-dependent NMR frequency at tim
t @5#. The corresponding correlation function is sensitive
the reorientational rather than the translational dynamics
this paper we deal with general correlation functions fulfi
ing f (t0 ,t0)51 and limt1→` f (t0 ,t1)50.

Recently, experiments have been designed to answe
question on which time scale the mobility of some tagg
molecule changes. Since the mobility is determined by
local environment of this molecule, knowledge of this tim
scale allows us to learn something about typical structu
rearrangements on a local scale. Of course, it is interestin
compare this time scale with the time scale on which
tagged molecule relaxes. Here we specifically refer to mu
dimensional NMR experiments.@6–10#. With this experi-
ment one can determine the four-time correlation functio
of the type^ f (t0 ,t1) f (t2 ,t3)& with four successive timest i
and time intervals Dt1[t12t0, Dt2[t22t1, and
Dt3[t32t2. Intuitively, the information content of the four
time correlation function can be described as follows. Let
assume that the two-time correlation function displays n
exponential decay with time and that this nonexponentia
is due to a heterogeneous distribution of relaxation rate
561063-651X/97/56~1!/730~11!/$10.00
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the system@11–13#. Then ^ f (t0 ,t1)& can be viewed as a
slow-dynamics filter. Only those subsystems pass that du
Dt1 do not move significantly. Accordingly, only those su
systems pass the double filter^ f (t0 ,t1) f (t2 ,t3)& that are
slow duringDt1 andDt3. Hence, duringDt1 a slow suben-
semble is selected that, after waiting for some timeDt2, is
analyzed by the final slow-dynamics filter. Intuitively, on
expects that for small values ofDt2 the majority of the slow
subensemble will pass the final filter since the subensem
will keep its slowness for some finite time. However, f
very large values of theDt2 for reasons of ergodicity the
slow subensemble will behave like the full ensemble. T
means that in the meantime many particles became fast
hence do not pass the final filter. The situation for so
intermediate timeDt2 is shown in Fig. 1. Therefore, on
expects that with increasingDt2 and fixedDt1 andDt3 the
correlation function̂ f (t0 ,t1) f (t2 ,t3)& decreases from som
starting value to some lower final value, which is given
^ f (t0 ,t1)&^ f (t2 ,t3)&. The crossover between both limitin
values describes after which time a typical element of
slow subensemble ‘‘forgets’’ its dynamical history. The b
sic idea of the NMR experiment, i.e., the selection of a s
ensemble and observing its route towards equilibrium

FIG. 1. Sketch of the idea behind the rate memory, which
connected to the time scaleDt2 on which the selected slow en
semble equilibrates.
730 © 1997 The American Physical Society
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56 731INFORMATION CONTENT OF MULTITIME . . .
been in the meantime also realized by different experime
methods~e.g., photobleaching@14–17# and dielectrics@18#!.

Of course, the determination of four-time correlatio
functions is not restricted only to NMR experiments. As d
cussed in@13#, they can be easily implemented also in co
puter simulations, yielding so far unknown informatio
about the fluctuations within the heterogeneous rate distr
tion.

The goal of the present paper is to analyze the informa
content of the four-time correlation function from a mo
formal point of view. From the above intuitive description
the four-time correlation function it is clear that this functio
contains information about arate memory. This term will get
a strict meaning during the course of the present analy
The theoretical results are applied to the case of NMR c
relation functions in the following paper@19#.

We briefly mention that nonexponential relaxation in tim
does not automatically indicate the existence of aheteroge-
neousdistribution of relaxation rates. Rather it can in pri
ciple also be explained by intrinsic non-exponential rela
ation ~homogeneouscase!. In general one expects that bo
contributions are present; see the recent Ref.@13# for an ex-
tensive discussion. Homogeneous contributions can
uniquely related to the existence of correlated back-and-f
jumps. It is evident that the selection of a slow subensem
as observed in the above NMR experiment is possible on
some heterogeneous contributions are present.

The present problem is very different from the Sieg
relation@20,21#, which relates the intensity correlation fun
tion, a four-particle function, and the intermediate scatter
function, a two-particle function. There it turns out that f
large scattering volumes the four-particle function can
calculated from the knowledge of the two-particle functio
Hence it does not contain additional information.

In Sec. II we develop an appropriate formalism for t
description of the correlation functions of interest. Furth
more, we introduce a simple dynamical model together w
a specific f (t0 ,t1) correlation function. The subseque
analysis of multitime correlation functions is then perform
in the language of this model. However, as will become cl
later on, all formal results hold beyond this model. In Sec.
we calculate the relevant four-time correlation function fo
bimodal distribution of relaxation rates~two-state approxi-
mation!. Apart from relaxation processes, fluctuations b
tween the fast and the slow state with someexchangerate are
taken into account. The two-state approximation is ana
gous to the Beckert-Pfeifer model@22,23#. In Sec. IV we
develop a more general approach that allows us to tre
general distribution of relaxation rates. We show that it
possible to define the limits ofminimumandmaximum rate
memoryand to express multitime correlation functions
terms of the two-time correlation function for both limit
This property allows us to introduce a dimensionless r
memory parameterQ that appropriately interpolates betwee
both extreme limits. It is demonstrated that within this the
retical framework the additional information of the four-tim
correlation function as compared to the two-time correlat
function can be expressed by this parameterQ. In Sec. V it is
shown that for a bimodal distribution of relaxation rates t
interpolation is exact. Section VI contains a discussion an
al
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summary. Among other things, a tentative physical interp
tation of the rate memory parameterQ is given.

II. FORMULATION OF THE PROBLEM

A. Formal description of the correlation function

First we introduce a convenient formalism for describi
multitime correlation functions. Let us considerN11 subse-
quent times t i( i50, . . . ,N) and a correlation function
^ f (t j 121 ,t j 1)••• f (t j M21 ,t j M)& containing M factors

f (t jm21 ,t jm) with j mP$1, . . . ,N%. All time intervals

@ tn21 ,tn# for which the correlation function contains anf
factor are labeled by ‘‘0’’ and all other time intervals b
‘‘?.’’ We introduce the notation p( i 1 , . . . ,i N ;
Dt1 , . . . ,DtN) as an abbreviation of the above correlati
function. Thei nP$0,?% denote the labels of the respectiv
time interval@ tn21 ,tn# andDtn5tn2tn21. For example, we
have ^ f (t0 ,t1)&5p(0;Dt1) and ^ f (t0 ,t1) f (t2 ,t3)&
5p(0,?,0;Dt1 ,Dt2 ,Dt3).

We can immediately formulate three trivial rules for th
p’s that directly follow from their definition:

p~ i 1 , . . . ,i N21 ,?;Dt1 , . . . ,DtN21 ,DtN!

5p~ i 1 , . . . ,i N21 ;Dt1 , . . . ,DtN21!, ~1!

p~?,i 2 , . . . ,i N ;Dt1 ,Dt2 , . . . ,DtN!

5p~ i 2 , . . . ,i N ;Dt2 , . . . ,DtN!, ~2!

and

p~ i 1 , . . . ,?,?,. . . ,i N ;Dt1 , . . . ,Dtn21 ,Dtn , . . . ,DtN!

5p~ i 1 , . . . ,?, . . . ,i N ;Dt1 , . . . ,Dtn211Dtn , . . . ,DtN!.

~3!

They will be used for our subsequent analysis. Finally
introduce the index ‘‘1’’ via

p~ i 1 , . . . ,1, . . . ,i N ;Dt1 , . . . ,Dtn , . . . ,DtN!

[p~ i 1 , . . . ,?, . . . ,i N ;Dt1 , . . . ,Dtn , . . . ,DtN!

2p~ i 1 , . . . ,0, . . . ,i N ;Dt1 , . . . ,Dtn , . . . ,DtN!.

~4!

A time interval withi n5? and 1,n,N is called thewaiting
time.

B. Simple dynamical model

Now we specify a dynamical model system and an app
priate correlation functionf (t0 ,t1). However, this is only for
the sake of clarity. Later on we will argue that the results
this paper are independent of these specifications and ca
generalized to arbitraryf (t0 ,t1) and to arbitrary underlying
dynamics.

The model is defined as follows. We consider an e
semble of units that can orient alongM different orientations
m51, . . . ,M (M→`). The dynamical state of a unit i
defined by its present reorientation rate, which, howev
may vary with time. Furthermore, we definef (t0 ,t1)
[d„m(t0),m(t1)…. This function is 1 if the orientation is
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732 56ANDREAS HEUER
identical att0 andt1 and 0 else. Furthermore, we assume t
a unit randomly selects the new orientation after a reorie
tion process. Since we have chosenM→`, this implies that
a unit that started at orientationm0 will revisit the same
orientation only in the limit of infinite time~random jump
model!. Thus there are no units reorienting fromm0 to m1
duringDtn21 and reorienting back duringDtn . Formally this
can be expressed as

p~ i 1 , . . . ,0,0,. . . ,i N ;Dt1 , . . . ,Dtn21 ,Dtn , . . . ,DtN!

5p~ i 1 , . . . ,0, . . . ,i N ;Dt1 , . . . ,Dtn211Dtn , . . . ,DtN!.

~5!

For this model thep’s can be simply interpreted as probab
ity functions. For example,p(0,?,0;Dt1 ,Dt2 ,Dt3) denotes
the probability that a unit does not reorient duringDt1 and
Dt3. It does not matter whether or not a reorientation ta
place duringDt2. This motivates the use of the symbol ‘‘?.
In contrast, the probabilityp(0,1,0;Dt1 ,Dt2 ,Dt3) addition-
ally requires that a unit does reorient duringDt2.

For this model homogeneous contributions may be in
duced by a finite probability for correlated back-and-fo
jumps, hence by a finiteorientational memory. One can eas-
ily see that the presence of small homogeneous contribut
violates Eq.~5!. Actually, also beyond this specific mod
Eq. ~5! can be regarded as a condition for purely hetero
neous relaxation@13#. For example, also for purely diffusiv
dynamics Eq.~5! holds and violation of this equation the
indicates some correlation of the direction of motion duri
two subsequent time intervals@13#. Hence, for many appli-
cations one may indeed assume the validity of Eq.~5! to a
very good approximation. However, in order to be as stric
possible, the case of finite homogeneous contributions
be considered too.

C. Final description of the problem

We distinguish two classes of correlation function
To the first class belong correlation functions th
contain at least one waiting time. An important memb
of this class isp(0,?,0;Dt1 ,Dt2 ,Dt3). These correlation
functions contain information about the rate memo
To the second class of correlation functions belo
p(0,Dt1),p(0,0;Dt1 ,Dt2), . . . , which in the limit of hetero-
geneous relaxation can all be expressed by the two-time
relation functionp(0;Dt1); see Eq.~5!.

Now the general question can be formulated as follo
What is the additional information content of correlatio
functions of the first class if all correlation functions of th
second class are known? For the heterogeneous limit
question reduces to analyzingp(0,?,0;Dt1 ,Dt2 ,Dt3) for
given correlation functionp(0i t) known for all t.

III. SOLUTION FOR A BIMODAL REORIENTATION
RATE DISTRIBUTION

A. Definition of the parameters

Here we analyze the simplest case of nonexponentia
laxation where the rate distribution of reorientation rates
bimodal and the present state of the unit is fully described
t
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its reorientation rateki( i51,2) ~two-state approximation!.
For some specific limits results can be already found
@9,23#. In this section we neglect the possible presence
homogeneous contributions. We choose the reorienta
rates such thatk1,k2. The statistical weights of both state
will be denoted asai . Since the dynamical state of a unit
fully characterized by its present reorientation rate, the ti
evolution of the system can be described as a Markov p
cess@25#.

Before calculating the time evolution we have to spec
the exchange processes between both states. In genera
reorientation rate of a unit is sensitive to the local structu
Let us consider one selected unit. We may distinguish t
cases. First, it is possible that due to reorientation proce
of adjacent units the local structure and hence the reorie
tion rate of the selected unit change. We use the termpassive
exchange. Second, a reorientation process of the selec
unit itself may trigger the change in local structure so th
after the reorientation process the reorientation rate
changed. For obvious reasons we call this scenarioactive
exchange.

We distinguish both exchange mechanisms by introduc
individual exchange ratesG i j

p5Gp/2ai and G i j
a5Ga/2ai for

transitions from statei to statej , respectively. The choice o
the denominators guarantees detailed balance. The tota
change rateG i j is defined asG i j[G i j

p1G i j
a . The parameters

entering the two-state approximation are sketched in Fig
This approximation is analogous to the two-state model
described by Beckert and Pfeifer@22–24#.

For given ki and ai the value ofGa is limited by the
condition that an active exchange process has to be
nected with a reorientation process. HenceG i j

a<ki , which
yieldsGa<Ga,max[min(2k1a1,2k2a2). In contrast toG

a, the
value ofGp is not limiteda priori ~however, see also Sec
III B !.

B. Rate equations and their solution

Now we want to determine how the populationsui(t) of
both states change during a time interval, starting att5t0.
We have to specify whether the index of the correlation fu
tions for this time interval is 0 or ?. Hence we have to co
sider two different kinds of rate equations. Let us first a
sume that the experiment is sensitive to reorientatio
corresponding to the index 0. Then the time evolution
ui(t) is described by

]

]t
u152k1u11GpS u2

2a2
2

u1
2a1

D , ~6!

FIG. 2. Schematic representation of the reorientation and
change rates used for the definition of the two-state system.
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]

]t
u252k2u21GpS u1

2a1
2

u2
2a2

D . ~7!

The terms proportional toki express that after one reorient
tion process a unit no longer contributes to the populati
under consideration. Exchange processes betweenu1 and
u2 can occur only via passive exchange since by definit
the units belonging toui have not reoriented sincet5t0. The
general solution may be written asui(t01t)5Xi j (t)uj (t0),
where we used the standard Einstein sum convention.
propagatorsXi j (t) can be obtained analytically from diago
nalization of the two-dimensional matrix

S 2k12Gp/2a1 Gp/2a2

Gp/2a1 2k22Gp/2a2
D . ~8!

Now we can calculatep(0;t), which formally is given by
( iui(t01t). On the basis of theXi j this term can be written
as ( i , jXi j (t)uj (t0)5( i , jXi j (t)aj . Here we used that a
t5t0 a fraction ofuj (t0)5aj units are in statej .

The general solution reads

p~0;t !5a1exp~2k1t !1a2exp~2k2t !. ~9!

For Gp50 we trivially haveai5a i andki5k i . For Gp.0
diagonalization of the above matrix approximately yiel
k i'ki1Gp/2ai . The amplitudesa i can be determined from
the eigenvectors. Thek i can be interpreted as effective r
orientation rates. Typically, a unit that is slow at a given tim
reorients faster than expected from its ratek1. The reason is
that it may switch to the fast state very soon and then re
ent much faster, yielding an effectivek1.k1. Note that
k1'k11Gp/2a1 impliesGp/2a1<k1.

For the calculation ofp(0,?,0;Dt1 ,Dt2 ,Dt3) it is also
necessary to determine the time evolution during a time
terval that is not sensitive to reorientations~a waiting time!.
During this time interval the evolution is governed by t
rate equations

]

]t
u15GS u2

2a2
2

u1
2a1

D ]

]t
u2

5GS u1
2a1

2
u2
2a2

D . ~10!

Here the exchange is due to active as well as passive
change processes. The solution can be written
ui(t01t)5Zi j (t)uj (t0), with

Z11~ t !5a11a2exp@2~G121G21!t#, ~11!

Z12~ t !5a12a1exp@2~G121G21!t#. ~12!

Analogous equations hold forZ21(t) and Z22(t). For finite
G and larget we always obtain the equilibrium population
ui(t01t)}ai independent of the initial valuesui(t0).

For an explicit calculation ofp(0,?,0;Dt1 ,Dt2 ,Dt3) the
time evolution of the units during three subsequent time
tervals has to be considered. DuringDt1 andDt3 reorienta-
tion as well as exchange processes have to be taken
s

n

he

i-

-

x-
s

-

to

account~expressed by the propagatorXi j ), whereas during
the second mixing time only exchange processes are rele
~expressed byZi j ). Hence

p~0,?,0;Dt1 ,Dt2 ,Dt3!5(
i
ui~ t3!

5 (
i , j ,k,l

Xi j ~Dt3!Zjk~Dt2!Xkl~Dt1!al .

~13!

From the structure of the general formula one can imme
ately conclude

p~0,?,0;Dt1 ,Dt2 ,Dt3!5c`$12exp@2~G121G21!Dt2#%

1c0exp@2~G121G21!Dt2#,

~14!

with c05p(0,?,0;Dt1 ,Dt250,Dt3) and c`5p(0,?,0;
Dt1 ,Dt2→`,Dt3). Direct calculation of c0 and c` is
straightforward but very tedious. Fortunately, their valu
can be fixed by a simple argument. Due to Eq.~5! we can
immediately write c05p(0,0;Dt1 ,Dt3)5p(0;Dt11Dt3).
In the opposite limittm2→` we know that in the case o
finite exchange rates the four-time correlation functi
can be factorized according top(0,?,0;Dt1 ,Dt2 ,Dt3)
5p(0;Dt1)p(0;Dt3) so that

c`5p~0;Dt1!p~0;Dt3!. ~15!

In summary, we have shown that it is possible to expr
p(0,?,0;Dt1 ,Dt2 ,Dt3) in terms ofp(0;t) andG121G21. In
accordance with intuition, the four-time correlation functio
contains the information about the exchange processes
hence about the rate memory.

IV. GENERAL APPROACH TO THE RATE MEMORY

Our general task is to evaluate the information conten
p(0,?,0;tm0 ,tm2 ,tm0) as a typical member of the first class
correlation functions for the given set of correlation fun
tions belonging to the second class of correlation functio
~see Sec. II C!. Here we use the notationtmi instead ofDt i in
order to be consistent with the notation within the NM
literature. There the time intervalstmi are also denotedmix-
ing times.

We first consider the heterogeneous limit, expressed
Eq. ~5!. It is evident that from the application of Eqs.~1!–~3!
and ~5!, p(0,?,0;tm0 ,tm2 ,tm0) cannot be expressed in term
of p(0;t). Intuitively this is clear sincep(0;t) does not con-
tain direct information about possible exchange processe

For reasons that will become clear further below we s
the tmi in small time intervals of lengthDt. According to
Eqs.~1!–~3! and~5!, p(0,?,0;tm0 ,tm2 ,tm0) may be rewritten
as p(0, . . . ,0,?, . . . ,?,0, . . . ,0;Dt, . . . ,Dt). In what fol-
lowsDt is chosen much smaller than any time scale involv
in the reorientation and exchange processes. In order to b
general as possible we analyze the functio
p( i 1 , . . . ,i N ;Dt, . . . ,Dt) with i nP$0,1,?% from now on.
Whenever the time intervals are of lengthDt they will be
omitted for simplicity, e.g.,p(1;Dt)5p(1).
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A. Minimum and maximum rate memory

The first step of our general analysis is to define so
reasonable physical limits for which multitime correlatio
functions can be directly expressed in terms of the two-ti
correlation function. We have already seen from the anal
of the two-state approximation that there exists a maxim
exchange rateG that is of the order of the effective slow
reorientation ratek1. Hence the time for which a slow un
‘‘remembers’’ that it is slow is at least of the order o
1/k1. We show that a limit ofminimum rate memorycan be
strictly formulated in the general case.

Let us assume for a moment that it is possible to mon
the time evolution of the orientation of an individual un
The question arises whether it is possible to predict the
namical behavior of this unit during the next time stepDt on
the basis of its previous behavior during the time of t
experimenttexpt for given p(0;t). The most simple case i
that duringtexpt no reorientation process has been observ
Then the probabilitypr that the unit reorients during the ne
time step Dt is given by pr5@p(0;texpt)2p(0;texpt
1Dt)]/p(0;texpt), which for a Kohlrausch function
p(0;t)5exp@2(t/t0)

b# is given by

pr~ texpt!5bDt~t0 /texpt!
12b. ~16!

We see that apart from the trivial caseb51 the estimated
future behavior depends on the experimental timetexpt. Now
let us assume that during the experimental time at least
reorientation process has occurred. Let the time since the
reorientation process be calledt r . If by chancetexpt is equal
to t r , the probabilitypr depends ont r as expressed by Eq
~16!. The estimation ofpr becomes ambiguous iftexpt.t r .
The additional information about the properties before
final reorientation process may influence the estimation
pr in an a apriori unknown way. The condition that ou
estimation has to be consistent withp(0;t) is not sufficient
to remove this ambiguity, but only requires thatpr depends
on t r . This leads to define the limit ofminimum rate
memory. We require that the time correlations are as shor
possible. In the special case mentioned above this sim
means that no correlations to times before the final reor
tation process exist. Stated differently, after a reorienta
process no information about the dynamical history rema
This scenario is, for example, implemented in the we
known continuous time random-walk models. In these m
els the walker randomly chooses a new waiting time afte
jump process@26#.

This intuitive definition can be easily formalized. Let
reorientation process occur during thenth time interval for
some given dynamical historyi 1 , . . . ,i n21. In the limit of
minimum rate memory the probability that the dynamic
future can be described by the sequencei n11 , . . . ,i N is in-
dependent of the properties before thenth time interval. For-
mally this condition is expressed as

p~ . . . ,i n21 ,i n51,i n11 , . . . !

p~ . . . ,i n21 ,i n51!
5
p~ i n51,i n11 , . . . !

p~ i n51!
,

~17!

which for future purposes is rewritten as
e

e
is

r

y-

d.
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l

p~ . . . ,i n21 ,i n51,i n11 , . . . !

5p~ . . . ,i n21 ,i n51!p~ i n51,i n11 , . . . !/p~ i n51!.

~18!

In order to define the minimum rate memory it is necess
to localize the reorientation process, i.e., the value oft r , as
precisely as possible. This is the reason why the time a
has to be split in very short time intervalsDt.

As a simple example we analyzep(0,?,0)
5p(0,0,0)1p(0,1,0). From Eq. ~18! we obtain
p(0,1,0)5p(0,1)p(1,0)/p(1). Since p(0,1)5p(0,?)
2p(0,0) 5p(0)2p(0,0),p(1)5p(?)2p(0)512p(0)
and using Eq. ~5! we may finally write
p(0,?,0;Dt,Dt,Dt)5 p(0;3Dt)1 @(p(0;Dt)2p(0;2Dt)#2/
@12p(0;Dt)#. Hencep(0,?,0;Dt,Dt,Dt) can be expressed
solely on the basis ofp(0;t). Analogous arguments hold fo
general probablity functionsp( i 1 , . . . ,i N), which can be
evaluated by successive application of Eq.~18!. Hence, in
the limit of minimum rate memoryp(0,?,0;tm0 ,tm2 ,tm0) can
be expressed in terms ofp(0;t) in a nontrivial way. The final
expression contains termsp(0;nDt) for all values ofn<N.
Hence, forN→` correlations of infinite length are involved
This feature is essential for taking into account the nonex
nentiality of p(0;t) as expressed byb,1.

In order to visualize the limit of minimum rate memor
we calculated the time evolution of individual units fo
which after all reorientation processes the new reorienta
rate is selectedrandomlyfrom the overall rate distribution. A
random choice means that the probability after a reorien
tion process to have the rateki is proportional toaiki , inde-
pendent of the previous rate. The proportionality to the s
tistical weightsai is obvious. The factorki takes into account
that a unit in a fast state reorients more often so that a
state has to be repopulated more frequently than a slow s
in order to guarantee detailed balance. The time of the re
entation processes and the new reorientation rates have
determined via a random-number generator. For three dif
ent units the time evolution is shown in Fig. 3. One c
clearly see that on average a slow unit is fast after a sin

FIG. 3. Time evolution of the dynamical state of three random
selected units with time in the limit of minimum rate memory. Th
equilibrium distribution of reorientation rates is chosen as a l
Gaussian distribution, centered aroundt0. It is sketched on the
left-hand side. After every reorientation process the new reorie
tion rate is chosen randomly with appropriate probabilities in or
to guarantee the equivalence of time and ensemble average.
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reorientation process, whereas a fast unit remains fast du
many reorientation processes. Note that, on average, ha
the time the unit is slow (t.t0), which simply means tha
the time average is identical to the ensemble average.

Next we discuss the limit ofmaximum rate memory. In-
tuitively one requires that a selected unit keeps its dynam
properties forever. In the above two-state approximation
corresponds toG50. Hence, in the limit of maximum rate
memoryp(0,?,0;tm0 ,tm2 ,tm0) is independent oftm2 so that
p(0,?,0;tm0 ,tm2 ,tm0)5p(0,?,0;tm0,0,tm0)5p(0,0;tm0 ,tm0).
More generally this reads

p~ . . . ,i n21 ,i n5?,i n11 , . . . !5p~ . . . ,i n21 ,i n11 , . . . !,
~19!

which may be reformulated as

p~ . . . ,i n21 ,i n51,i n11 , . . . !

5p~ . . . ,i n21 ,i n11 , . . . !

2p~ . . . ,i n21 ,i n50,i n11 , . . . !. ~20!

Successive application of Eq.~20! again fully determines the
value of p( i 1 , . . . ,i N) for a given correlation function
p(0;t).

We would like to stress that both limits can be defin
without referring to the special interpretation of the corre
tion functions as probability functions. From a formal poi
of view the limit of minimum rate memory corresponds to
maximum number of factorizations of the correlation fun
tion. The correlations are as short as possible, but are
consistent with the given non-exponential two-time corre
tion function. Any further factorization would automatical
be inconsistent with the givenp(0;t). Also the introduction
of the maximum rate memory is sufficiently general to ho
beyond the idealized picture of reorientational dynamics.

B. Intermediate rate memory

For the definition of an intermediate rate memory o
assumes that after a single reorientation process a unit
probability pmin randomly ~see above for its precise mea
ing! selects a new reorientation rate~minimum rate memory!
and with probabilitypmax512pmin keeps its old reorienta
tion rate~maximum rate memory!. Of course, in general this
is only an approximation of the real behavior. We introdu
the dimensionless parameterQ51/Pmin. It denotes the aver
age number of relaxation processes after which a unit
forgotten its initial dynamical state. From Eqs.~18! and~20!
we can write

p~ . . . ,i n21,1,i n11 , . . . !

5~1/Q!p~ . . . ,i n21,1!p~1,i n11 , . . . !/p~1!

1~121/Q!@p~ . . . ,i n21 ,i n11 , . . . !

2p~ . . . ,i n21,0,i n11 , . . . !#. ~21!

It will be clarified further below under which conditions th
introduction of a single parameter is exact. After success
application of Eq.~21! p( i 1 , . . . ,i N) can be expressed i
terms ofp(0;nDt) with n<N.

Now we are in a position to calculat
p(0,?,0;tm0 ,tm2 ,tm0) for a given value ofQ. As before we
ng
of

al
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-

-
till
-

ith

e

as

e

assumep(0;t)5exp@2(t/t0)
b#. In order to apply Eq.~21! for

the calculation ofp(0,?,0;tm0 ,tm2 ,tm0) we discretizetm2 in
R time intervals Dt much smaller thant0, yielding
p(0,?, . . . ,?,0;tm0 ,Dt, . . . ,Dt,tm0). This expression is an
abbreviation for a sum of 2R terms if all indices ? are written
as a sum over 0 and 1. Therefore, the number of terms
have to be calculated exponentially increases withtm2 so that
a direct numerical evaluation by successive application
Eq. ~21! cannot be extended to large values oftm2. However,
it is possible to devise a recursive algorithm that allows o
to calculatep(0,?,0;tm0 ,tm2 ,tm0) also for large values of
tm2. The algorithm is presented in Appendix A. For the n
merical calculations below we choosetm05t0.

In Fig. 4 we present calculations ofF4(tm2)
[p(0,?,0;tm0 ,tm2 ,tm0)/p(0,0;tm0 ,tm0) for b50.5 and dif-
ferent values ofQ. One can clearly see that the dependen
onQ can be approximated by scalingtm2 with 1/Q.

For practical purposes it is unsatisfactory th
p(0,?,0;tm0 ,tm2 ,tm0) is not given by a simple analytical ex
pression. Let us first considerQ51. In the limit tm2→0 it is
no longer necessary to divide the waiting time in smal
subunits, hence one may chooseR51 and application of Eq.
~18! yields

p~0,?,0;tm0 ,tm2 ,tm0!'p~0;2tm01tm2!

1p~0,1,0;tm0 ,tm2 ,tm0!, ~22!

with

p~0,1,0;tm0 ,tm2 ,tm0!'
@p~0;tm0!2p~0;tm01tm2!#

2

12p~0;tm2!
.

~23!

It is easy to check that also the limittm2→` is correctly
reproduced, yieldingp(0;tm0)

2. Therefore, one may hop
that for all values oftm2 the choiceR51 yields a reasonable
approximation to the true solution. ForQÞ1 an analogous
application of Eq.~21! does not yield the correct limit for
tm2→`. However, having in mind the above scaling rel
tions, the probability functions forQÞ1 can be simply ob-
tained by scalingtm2 with 1/Q. Hence we may approximat

p~0,?,0;t0 ,tm2 ,t0!'p~0;2t01tm2 /Q!

1p~0,1,0;t0 ,tm2 /Q,t0!, ~24!

FIG. 4. Dependence ofF4(tm2) onQ for b50.5. Note the ap-
proximate scaling oftm2 with Q.
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where the last term is approximated by Eq.~23!. In Fig. 5
this approximate solution is plotted forQ52 and b50.6
together with the exact solution. Both curves agree withi
few percent. Hence, for practical purposes it is sufficient
estimatep(0,?,0;tm0 ,tm2 ,tm0) via Eqs.~23! and ~24!.

C. Generalization to the case
of finite homogeneous contributions

We extensively used Eq.~5! in order to obtain the result
presented above. For real systems and for arbitrary corr
tion functions this relation may be violated, because o
finite orientational memory. Then the correlation functio
p(0,0;Dt1 ,Dt2),p(0,0,0;Dt1 ,Dt2 ,Dt3), . . . can no longer
be expressed viap(0;Dt1). For a strict calculation of
p(0,?,0;tm0 ,tm2 ,tm0) via successive application of Eq.~21!
one has to know allp(0, . . . ,0). Inprinciple this strict cal-
culation can be performed. However, two levels of appro
mation are possible. First Eq.~24! can be used in its gener
alized version

p~0,?,0;tm0 ,tm2 ,tm0!'p~0,0,0;tm0 ,tm2 /Q,tm0!

1
@p~0;tm0!2p~0,0;tm0 ,tm2 /Q!#2

12p~0;tm2 /Q!
.

~25!

Here only the correlation functions p(0;Dt1),
p(0,0;Dt1 ,Dt2), and p(0,0,0;Dt1 ,Dt2 ,Dt3) are involved.
Actually, this approximation has been used in the para
work of Ref. @13#, yielding very good agreement betwee
simulated and estimated four-time correlation functions.
more drastic approximation is the direct use of Eq.~24!
which for the analysis of experimental data may be the o
feasible procedure.

V. RATE MEMORY DESCRIPTION VERSUS
EXPLICIT SOLUTION OF RATE EQUATIONS

A. Two-state case

First we show that Eq.~21! can be reproduced on th
basis of the rate equations of the two-state approximat
From this comparisonQ can be expressed in terms of th
parameters characterizing the two-state approximation~see
Sec. III!. A priori the equivalence of both approaches is n

FIG. 5. Comparison of the exact result~solid line! for F4(tm2)
with the approximate solution~dashed line! in Eq. ~23! for b50.6
andQ52.
a
o

la-
a

-

l

y

n.

t

evident, mainly because two different exchange rates are
cluded in the two-state model whereas the rate memory
scription only contains a single rate memory parameterQ.

Equation~21! describes the time evolution of the popul
tions during thenth time interval. This may be compare
with the explicit calculation on the basis of the two-sta
approximation. Since the time interval is infinitesimal
small the calculation for the two-state approximation can
directly performed. The explicit calculation is deferred
Appendix B. It turns out that for the two-state approximati
p(0,?,0;tm0 ,tm2 ,tm0) is indeed fully characterized by
single parameterQ as introduced in Eq.~21!. It is given by

Q5
Gp1ga

Gp1Ga 5
Gp1ga

G
, ~26!

with

~ga!21[
1

2a1k1
1

1

2a2k2
. ~27!

Equation ~26! connects the general description of the ra
memory of Sec. IV with the strict calculation of the two-sta
approximation.

For Ga5ga we getQ51. Since this corresponds to th
limit of minimum rate memory, forGa5ga a unit randomly
selects a new reorientation rate after a reorientation proc
This can be also shown explicitly. For a random choice o
new reorientation rate ~see the discussion in
Sec. III B! the probability pi that the new reorientation
rate iski must be proportional toaiki , so thatp15a1k1 /
(a1k11a2k2). Then the active exchange rateG21

a from state
2 to state 1 is given byk2p1. FromGa52a2G21

a one directly
obtainsGa5ga.

We briefly sketch a more intuitive derivation of Eq.~26!.
As already mentioned above, Eq.~21! expresses the fact tha
a fraction 1/Q of units that reorient during a given time in
terval forget their dynamical history, whereas the rest ke
its present rate. The exchange rate is given byG5Gp1Ga.
This rate has to be smaller by a factor ofQ as compared to
the fictive valueGp1ga of the total exchange rate for whic
every reorientation process would be connected with a
of rate memory. Therefore, we expectGp1ga5QG, which
is equivalent to Eq.~26!.

Specializing to the limitk1!k2, Eq. ~26! may be approxi-
mated as

Q5
Gp12a1k1

G
'
2a1k1

G
, ~28!

where we usedGp/2a11k1'k1. Hence we obtain the inter
esting result that the relevant quantity that can be extrac
from the four-time correlation function is the ratio of th
sloweffective reorientation rate and the exchange rate.

Surprisingly, Eq.~26! also shows that the minimum valu
of Q is smaller than one and is given by

Qmin5
ga

Ga,max5
1

11a1k1 /k2a2
. ~29!

Here we assumed thata1k1<a2k2. If Ga.ga the exchange
among the two states as a consequence of a reorient
process is larger than in the case of a purely statistical re
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tribution. Hence we are in the regime of anti-correlatio
From Eq.~29! one directly obtainsQmin.0.5. It can be eas
ily checked that a Kohlrausch law withb50.5 can be very
well approximated by a biexponential witha1'a2 and
k2 /k1513. For a15a2 one obtainsQmin'k2 /(k21k1),
which for the example chosen above is 0.93 and hence
close to 1. Therefore in practice the relationQ>1 is approxi-
mately fulfilled and the regime of anticorrelation can be n
glected. In any case, it is hard to think of a physical mec
nism that should lead to such kinds of anticorrelations.

For the two-state approximation we may explicitly che
the quality of the approximation~23! and ~24!. Choosing
k1!1/tm0!k2 anda15a251/2, the exact solution can b
written asF4(tm2)5(1/2)@11exp(22Gtm2)# @see Eq.~14!#.
In contrast, after a short calculation the approximation~23!
readsF4(tm2)51/@22exp(2kstm2 /Q)#51/@22exp(2Gtm2)#.
Both functions are very similar for all values oftm2. How-
ever, this example also demonstrates that the exact solu
of the two-state approximation can be obtained only if
time intervaltm2 is split in many small time intervals and th
four-time correlation function is calculated numerica
along the lines described in Sec. IV.

B. GeneralN-state case

First we clarify under which conditions our rate memo
approach exactly describes a generalN-state model. Per-
forming a calculation in analogy to the calculation presen
in Appendix B, it can be checked that exactly under t
condition

G i j
a,p[Gc

a,pkiajkj /2, ~30!

with some constantGc
a andGc

p , the system can be describe
by a single rate memory parameterQ, which then is given by

Q5
Gc
p1gc

a

Gc
p1Gc

a . ~31!

Here we defined

gc
a[

2

(
i
aiki

. ~32!

Equation~30! simply means that units with longer reorient
tion rates keep their rates for a longer time. Note that fo
two-state approximation one has to identifyGc

a,p

5Ga,p/a1k1a2k2 and (ga)215(gc
a)21/a1k1a2k2. It is easy

to check that Eq.~31! then reduces to Eq.~26!.
In the case that exchange processes are always conn

with reorientation processes, i.e., in the limit of purely act
exchange processes, the validity of Eq.~30! has the same
simple interpretation as in the two-state case. On avera
segment changes its rate afterQ reorientation processes@Q
given by Eq.~31!#. Here the limit of minimum rate memory
simply means that every exchange process to an arbit
new state comes together with a reorientation process. In
systems one might image that the new rateknew after a reori-
entation process is still somewhat correlated with the old
.
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kold . In this case the four-time correlation functionF4 may
be approximated by some valueQ>1, which now is a mea-
sure for the loss of dynamic memory by a single reorien
tion process. Forknew→kold one would expectQ→`,
whereas the limit in whichknew is uncorrelated tokold one
recovers the minimum rate memory.

Even for the worst case, for which the exchange ra
passive as well as active, deviate from Eq.~30! in an arbi-
trary way, one can argue that the interpolation by a sin
parameterQ is still expected to be a good approximatio
For a given value oftm0 the heterogeneous distribution ca
be formally split into two parts, defined byki<1/tm0 and
ki>1/tm0. The correlation functionp(0,?,0;tm0 ,tm2 ,tm0) is
sensitive to exchange processes between the slow and
fast part and not to exchange processes within one p
Since the rate memory description is exact for a two-st
case we expect that Eq.~24! is always a good approximation
independent of the validity of Eq.~30!. This can be con-
firmed for a model system, for which Eq.~30! does not hold,
but p(0,?,0;tm0 ,tm2 ,tm0) can nevertheless be perfectly e
pressed via Eq.~24! @27#. Invalidation of Eq.~30! rather
leads to a dependence ofQ on the choice oftm0. Experimen-
tally, it turns out for ortho-terphenyl that this dependence
very small@10#.

The arguments of the preceding paragraph might sug
that the crossover between both limiting regimes of the fo
time correlation function can be described by a single ra
see Eq.~14!. However, this is in disagreement with the actu
calculation for a broad distribution of relaxation rates~see
Fig. 4!, showing significant nonexponential behavior. T
reason is that in contrast to the two-state approximati
which was the basis for Eq.~14!, the general approach take
into account that both regimes (ki<1/tm0 and ki>1/tm0)
contain more than a single relaxation rate.

VI. DISCUSSION

It has been shown that the rate memory approach is
propriate to quantify the outcome of the four-time correlati
function for a given two-time correlation function. The ma
advantages of this approach is that~i! the similarities of the
mathematical structure of the two-time and multitime cor
lation functions are fully exploited,~ii ! the analysis is free of
any model assumptions and the value ofQ has a simple
physical interpretation,~iii ! the role of the minimum rate
memoryQ51 is clarified,~iv! there exist simple formulas
that allow one to estimate the four-time correlation functi
for given two-time correlation function and rate memory p
rameterQ, and~v! homogeneous contributions can easily
taken into account. Alternatively, one can simultaneou
analyze the two-time and the four-time correlation functi
by a special model involving reorientation rateski and ex-
change ratesG i j @10,23#. In order to keep the number of fre
parameters limited the exchange rates may be paramet
like, e.g.,G i j5G0(kikj )

a with some positivea. Using these
rate equations, a simultaneous fit of the two-time and
four-time correlation function may be performed. Howev
all above-mentioned advantages of theQ-description get
lost.

For example, the rate memory approach would pred
that for a given two-time correlation function in the limit o
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large G0 the numerical solution of the above model yiel
identical four-time correlation functions independent of t
parametera. This solution would be identical to theQ51
curve. Without having analyzed the underlying structure
the present problem, this observation might come as a
prise. This also means that forQ'1 a fit of the four-time
correlation function does not discriminate between differ
choices for theG i j . The situation changes for a situatio
where the rate memory parameterQ significantly depends on
tm0. Then the numerical solution of rate equations may
deed give some additional hints about the precise dep
dence ofG i j on ki and kj and hence about the nature
fluctuations within the heterogeneous distribution of rela
ation rates.

The analysis of this work quantifies multitime correlatio
functions in the case ofdynamical heterogeneities. The
analysis breaks down for the case ofstaticheterogeneities. A
simple model is an ensemble of particles diffusing in a h
erogeneous environment. For this example a descriptio
the exchange in terms of constant rates is no longer poss
Rather the probability of an exchange process is relate
the position of a particle. Hence the stochastic approac
this work inherent in Eq.~21! breaks down.

In order to link the formal analysis of this work with th
physics of supercooled liquids we would like to give a te
tative physical interpretation ofQ. One expects that a stron
interaction among different relaxation modes yields a la
exchange rate and hence a small rate memory paramete
contrast, for localized dynamics in fixed potentials one
pects large values ofQ. From NMR experiments on pheny
groups in polycarbonate it is known that the phenyl grou
retain their individual flipping rate during a large number
flips @28#. Although a quantitative analysis of these expe
ments in terms of theQ parameter is not possible, one ma
estimate that the value ofQ is at least of the order of 100
This clearly demonstrates that the value ofQ is somewhat
related to the locality of the dynamics. Whenever the dyna
ics is local, the dynamics occurs in a rather fixed poten
that is constant for times much larger than the dynam
time scale. In contrast, the dynamics around the glass tra
tion is very delocalized and is described by very small val
of Q @9#. Hence we may tentatively say thatQ is related to
the cooperativity of the dynamics. As will be shown in els
where, this can be explicitly shown for a generalized Fr
rickson model@27,29#.

In summary, we have analyzed the information conten
multitime correlation functions as compared to the stand
two-time correlation function in the case of dynamic hete
geneities. The limits of minimum and maximum ra
memory can be uniquely defined without any model assu
tions. In these limits the multitime correlation functions su
f
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as p(0,?,0;tm0 ,tm2 ,tm0) can be expressed in terms o
p(0;Dt1),p(0,0;Dt1 ,Dt2), . . . . We have shown that it is
possible to find a reasonable interpolation between both
treme limits, thereby introducing a rate memory parame
Q. The value ofQ counts the number of relaxation process
after which a unit is uncorrelated to its initial dynamic
state. We have formulated the problem such that the
memory parameter can be directly extracted from the fo
time correlation function for given two-time correlatio
function. The experimental relevance of this work is demo
stated in the following paper@19#. For the two-state approxi
mation the interpolation procedure is exact. Although t
precise physical meaning of the rate memory still has to
clarified, one may already say that for glasses it is relate
the cooperativity of the structural relaxation.

The next theoretical step is to elucidate the relation of
rate memory to microcopic properties of glasses and to ch
the predictions of theories of the glassy state with respec
the rate memory. We hope that this may be initiated by
present work.
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APPENDIX A

We want to show how to calculatep(0,?,0;tm0 ,tm2 ,tm0)
on the basis of Eq.~21! in a recursive way if the waiting time
tm2 is divided intoR and tm0 into S identical time intervals
Dt. As mentioned in the text, the direct calculation
p(0,?,0;tm0 ,tm2 ,tm0) requires the evaluation of 2R terms,
which is prohibitive in the limit of large waiting timestm2.
Let us define

A~m,n![p~ i 050,i 15?, . . . ,i m5?,i m1150, . . . ,

3 i m1n50;tm0 ,Dt, . . . ,Dt !. ~A1!

Our goal is to calculateA(R,S)5p(0,?,0;tm0 ,tm2 ,tm0).
Note that theA(0,n)5p(0;nDt1tm0) are given. Factoriza-
tion of A(m,n) aroundi m51 on the basis of Eq.~21! yields
A~m,n!5A~m21,n11!1~1/Q!
@p~0;tm0!2A~m21,1!#@p~0;nDt !2p„0;~n11!Dt…#

12p~0;Dt !

1~121/Q!@A~m21,n!2A~m21,n11!#. ~A2!
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Hence A(m,n) can be calculated just on the basis
A(m21,1),A(m21,n), and A(m21,n11). Starting from
A(0,0), . . . ,A(0,R1S), one may first calculate
A(1,0), . . . ,A(1,R1S21). Continuing this procedure, on
finally arrives atA(R,S). The number of steps is of the orde
of R(R1S)/2 and hence depends only algebraically onR.
Therefore, this algorithm allows the numerical determinat
of p(0,?,0;tm0 ,tm2 ,tm0) for all relevant values oftm2.

APPENDIX B

Our task is to calculate the different terms of Eq.~21! for
the two-state approximation and finally to compare the le
and the right-hand side in order to check whether the
memory can be expressed by a single parameterQ. The
value ofDt is chosen such thatDtG!1 andDtki!1. For
given indicesi 1 , . . . ,i n21 one might calculate step for ste
the population of the two states by direct integration of
rate equations. Note that forDtki!1 the integration over
Dt can be directly performed. However, since Eq.~21! is
supposed to hold for alli 1 , . . . ,i n21 and for all values of
n1 it has to be valid for arbitrary populationsr 1 andr 2 of the
two states after the (n-1!th time interval. Furthermore, no
restrictions are imposed on the indicesi n11 ,i n12 , . . . .
Therefore, the individual populationssi after thenth time
interval have to be identical on the left- and the right-ha
side of Eq.~21!. Here we check that forQ as given by Eq.
~26! and for arbitrary populationsr i this condition can be
fulfilled.

Two different kinds of terms have to be distinguishe
The first kind of terms are of the form
p( . . . ,i n11 , . . . ,i N). As discussed before, we have to ca
culate the populationssi after thenth time step. For rea-
sons of symmetry we can restrict ourselves to the ca
lation of s1. As an example let us deal with th
term p( . . . ,i n21,1,i n11 , . . . )5p( . . . ,i n21 ,?,i n11 , . . . )
2p( . . . ,i n21,0,i n11 , . . . ). Thepopulations before thenth
time step arer i . According to our analysis of Sec. III, w
have si5Zi j (Dt)r j2Xi j (Dt)r j , from which we obtains1
5Dt$ G(r 2/2a22r 1/2a1)2@2k1r 11Gp(r 2/2a22r 1/2a1)#%
5Dt@k1r 11Ga(r 2/2a22r 1/2a1)#. Analogous calculations
lax

s

n

-
te

e

d

.

-

can be performed for the other terms, yielding

s15Dt@k1r 11Ga~r 2/2a22r 1/2a1!#

for p~ . . . ,i n21,1,i n11 , . . . !, ~B1!

s15Dt@k1a1# for p~ i n51,i n11 , . . . !, ~B2!

s15r 1 for p~ . . . ,i n21 ,i n11 , . . . !, ~B3!

s15r 11Dt@2k1r 11Gp~r 2/2a22r 1/2a1!#

for p~ . . . ,i n21 ,i n50,i n11 , . . . !. ~B4!

Note that for the calculation ofp( i n51,i n11 , . . . ) theinitial
populationsr i are given byai . The second kind of terms
p( . . . ,i n51) involve the total probability after thenth time
step. Let us calculatep( i n51). Integration yields
s15Dt@kiai #, hencep( i n51)5s11s25Dt@a1k11a2k2#. In
summary, one obtains

p~ i n51!5Dt@a1k11a2k2#, ~B5!

p~ . . . ,i n21 ,i n51!5Dt@r 1k11r 2k2#. ~B6!

Summing up the terms of the right-hand side of Eq.~21!
yields

s1,right/Dt5~1/Q!
a1k1~r 1k11r 2k2!

k1a11k2a2
1~121/Q!

3Fk1r 12GpS r 2
2a2

2
r 1
2a1

D G . ~B7!

The left-hand side of Eq.~21!, hences1,left , is given by Eq.
~B1!.

Solving the relations1,left5s1,right for Q yields, after some
lengthy but straightforward algebra, the expression given
Eq. ~26!. Since the value ofQ does not depend on ther i we
have proved that it is indeed sufficient to introduce a sin
parameterQ in order to describe all possible probabilitie
p( i 1 , . . . ,i N) and hence the functionF4 for the two-state
approximation.
s
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