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In recent experiments four-time correlation functions have been systematically measured for a polymer near
the glass transition via methods of multidimensional NMR Heueret al, Phys. Rev. Lett75, 2851(1995].
In this paper a theoretical analysis of the information content of multitime correlation functions is presented.
Having in mind a heterogeneous distribution of relaxation rates, it is demonstrated that multitime correlation
functions contain information about temporal fluctuations within the heterogenous distribution. If the relax-
ation rate distribution is bimodal, the additional information content of the four-time correlation function as
compared to the two-time correlation function is given by the exchange rate between both dynamical states.
More generally, for arbitrary rate distributions the additional information content of multitime correlation
functions can be, to a good approximation, expressed by a single dimensionless patanidtisrparameter
is a measure for the fluctuations within the heterogeneous distribution. It is deateéeademory parametett
is argued that its value is related to the cooperativity of the dynaf8d€63-651X97)08307-4

PACS numbeps): 61.43.Fs, 02.56-r, 05.40+j, 61.20.Lc

I. INTRODUCTION the system[11-13. Then (f(ty,t;)) can be viewed as a
slow-dynamics filter. Only those subsystems pass that during
The glass transition is often characterized by propertied\t; do not move significantly. Accordingly, only those sub-
of two-time correlation functions such as the density-systems pass the double filtgf(to,t;)f(t,,t3)) that are
density correlation function (f(tg,t;)) with f(tg,tq) slow duringAt; andAts. Hence, duringAt; a slow suben-
= cogKX(t)) —x(ty) ]} [1,2] wherex(t) denotes the positions Semble is selected that, after waiting for some tifxtg, is
of the individual molecules at timeand the angular brackets analyzed by the final slow-dynamics filter. Intuitively, one
denote the ensemble average. The rate distribution ofithe €XPects that for small values aft, the majority of the slow

relaxation, which may have a width of several decades capubensemble will pass the final filter since the subensemble

be extracted from such observables. The properties of thid/lll keep its slowness for some finite time. However, for

rate distribution have been analyzed extensividyd]. In vlery Iarge valu%sls of tl?%t?] for :ias?hns fOf” ergodicki)tly ﬂjl'eh'
NMR experiments one often usesf(tq,t;)=codt, slow subensemble will behave fike the Uil ensemble. 1hIS

X [w(to) — w(t;)]} wheret, is an experimentally adjustable means that in the meantime many particles became fast and

time andw(t) the angular-dependent NMR frequency at timehence do not pass the final filter. The situation for some

t [5]. Th di lation function i itive t intermediate timeAt, is shown in Fig. 1. Therefore, one
- 1he corresponding correfation function 1S sensitive 0expects that with increasinyt, and fixedAt, andAt; the
the reorientational rather than the translational dynamics. |

) X ; ; - Worrelation function(f(to,t1)f(t,,t3)) decreases from some
.thIS paper we deal vylth general correlation functions fulfill- starting value to some lower final value, which is given by
ing f(to,to)=1 and lim__.f(to,t;)=0.

) ) (f(to,ty)){f(t,,t3)). The crossover between both limiting
Recently, experiments have been designed to answer thgyjues describes after which time a typical element of the

question on which time scale the mobility of some taggeds|ow subensemble “forgets” its dynamical history. The ba-

molecule changes. Since the mobility is determined by thgic jdea of the NMR experiment, i.e., the selection of a sub-

local environment of this molecule, knowledge of this time ensemble and observing its route towards equilibrium has
scale allows us to learn something about typical structural

rearrangements on a local scale. Of course, it is interesting to

compare this time scale with the time scale on which the

tagged molecule relaxes. Here we specifically refer to multi-

dimensional NMR experiment§6—10]. With this experi- At,

ment one can determine the four-time correlation functions

of the type(f(tq,t1)f(t,,t3)) with four successive timeg

and time intervals At;=t;—t,, At,=t,—t;, and

Atz=t3—t,. Intuitively, the information content of the four- log’ 1/1

time correlation function can be described as follows. Let us

assume that the two-time correlation function displays non- FIG. 1. Sketch of the idea behind the rate memory, which is
exponential decay with time and that this nonexponentialityconnected to the time scalkt, on which the selected slow en-
is due to a heterogeneous distribution of relaxation rates isemble equilibrates.
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56 INFORMATION CONTENT OF MULTITIME . .. 731
been in the meantime also realized by different experimentadummary. Among other things, a tentative physical interpre-
methods(e.g., photobleachinfl4—17 and dielectric§18]).  tation of the rate memory parame@ris given.
Of course, the determination of four-time correlation
functions is not restricted only to NMR experiments. As dis- [l. FORMULATION OF THE PROBLEM
cussed if13], they can be easily implemented also in com-
puter simulations, yielding so far unknown information
about the fluctuations within the heterogeneous rate distribu- First we introduce a convenient formalism for describing
tion. multitime correlation functions. Let us considér 1 subse-
The goal of the present paper is to analyze the informatioquent timest(i=0,... N) and a correlation function
content of the four-time correlation function from a more (f(tj,—1:tj,)---f(tj, —1,t;))  containing M factors
formal point of view. From the above intuitive description of f(t; —1.t; ) with jne{1,... N}. All time intervals
the four-time correlation function it is clear that this function [t,_,,t,] for which the correlation function contains dn
contains information aboutrate memoryThis term will get  factor are labeled by “0” and all other time intervals by

A. Formal description of the correlation function

a strict meaning during the course of the present analysis’?.” We introduce the notation p(iy,...,iy;
The theoretical results are applied to the case of NMR corAt,, ... ,Aty) as an abbreviation of the above correlation
relation functions in the following papéd9]. function. Thei,e{0,?} denote the labels of the respective

We briefly mention that nonexponential relaxation in timetime interval[t,_,,t,] andAt,=t,—t,_,. For example, we
does not automatically indicate the existence d¢feteroge- have  (f(to,t1))=p(0;Aty)  and  (f(to,t1)f(t2,ts))
neousdistribution of relaxation rates. Rather it can in prin- =P(0,?,0At;,Aty,At3).
ciple also be explained by intrinsic non-exponential relax- e can immediately formula_lte th_re_e_ trivial rules for the
ation (homogeneousase. In general one expects that both P'S that directly follow from their definition:
contributions are present; see the recent Ri] for an ex- (i i 2 At At Aty)
tensive discussion. Homogeneous contributions can be L e T
uniquely related to the existence of correlated back-and-forth =p(iq, .. in_1;AL, o ATNC), D
jumps. It is evident that the selection of a slow subensemble
as observed in the above NMR experiment is possible only if P2z, .. ins Aty Aty L Aty)
some heterogeneous contributions are present. — (i -

The present problem is very different from the Siegert =Pz, iniAL, - A, @
relation[20,21], which relates the intensity correlation func- and
tion, a four-particle function, and the intermediate scattering ]
function, a two-particle function. There it turns out that for P(izs -2, 7, ins Aty AL g Aty ALy
large scattering volumes the four-particle fun_ction can be =p(iy, ...,2, .. iNiAL, L At FAL,, L. L ALY).
calculated from the knowledge of the two-particle function.

Hence it does not contain additional information. ©)

In Sec. 1l we develop an appropriate formalism for thérpey il be used for our subsequent analysis. Finally we
description of the correlation functions of interest. Further-imroduce the index “1” via
more, we introduce a simple dynamical model together with
a specific f(tp,t;) correlation function. The subsequent  p(i,,...,1,...iN;Aty, ... At,, ... Aty)
analysis of multitime correlation functions is then performed ) )
in the language of this model. However, as will become clear =p(iz, ...,7, . inGAL, AL, L ALY)
later on, all formal results hold l_)eyond this model. In_ Sec. lll —p(iy, 0, iniALy, At,, ... Aty).
we calculate the relevant four-time correlation function for a
bimodal distribution of relaxation rategwo-state approxi- (4)
mation). Apart from relaxation processes, fluctuations be-, .. . s . .
tween the fast and the slow state with soexehangeate are 'tbi‘nt]';ne interval withi,=?2 and Ixn<N is called thawaiting
taken into account. The two-state approximation is analo-
gous to the Beckert-Pfeifer modg22,23. In Sec. IV we
develop a more general approach that allows us to treat a
general distribution of relaxation rates. We show that it is Now we specify a dynamical model system and an appro-
possible to define the limits aghinimumandmaximum rate  priate correlation functioi(ty,t;). However, this is only for
memoryand to express multitime correlation functions in the sake of clarity. Later on we will argue that the results of
terms of the two-time correlation function for both limits. this paper are independent of these specifications and can be
This property allows us to introduce a dimensionless ratgeneralized to arbitrar§(ty,t;) and to arbitrary underlying
memory parameted that appropriately interpolates between dynamics.
both extreme limits. It is demonstrated that within this theo- The model is defined as follows. We consider an en-
retical framework the additional information of the four-time semble of units that can orient aloi different orientations
correlation function as compared to the two-time correlatiorm=1, ... M (M—=). The dynamical state of a unit is
function can be expressed by this param€em Sec. Vitis defined by its present reorientation rate, which, however,
shown that for a bimodal distribution of relaxation rates thismay vary with time. Furthermore, we defing(ty,t;)
interpolation is exact. Section VI contains a discussion and & §(m(ty),m(t;)). This function is 1 if the orientation is

B. Simple dynamical model
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identical atty andt, and O else. Furthermore, we assume that re a,

a unit randomly selects the new orientation after a reorienta- 4, «<——>

tion process. Since we have choddn- oo, this implies that r°

a unit that started at orientatiom, will revisit the same <>
orientation only in the limit of infinite timgrandom jump

mode). Thus there are no units reorienting fram, to m; k1 K, )k

duringAt,_ and reorienting back duringyt,, . Formally this

can be expressed as FIG. 2. Schematic representation of the reorientation and ex-

p(is 0.0 AL At,_,,At Aty) change rates used for the definition of the two-state system.
1 L ] 1 P | 1 1 .y n— 1 n! "y

PAx, 0Bty Aty F AL, ALY its reorientation ratek;(i =1,2) (two-state approximation

©) For some specific limits results can be already found in
[9,23]. In this section we neglect the possible presence of
For this model thep’s can be simply interpreted as probabil- homogeneous contributions. We choose the reorientation
ity functions. For examplep(0,?,0At;,At,,At;) denotes rates such that;<k,. The statistical weights of both states
the probability that a unit does not reorient duriagy and  will be denoted as; . Since the dynamical state of a unit is
Ats. It does not matter whether or not a reorientation takesylly characterized by its present reorientation rate, the time
place duringAt,. This motivates the use of the symbol “?.” eyolution of the system can be described as a Markov pro-
In contrast, the probability(0,1,0At,,At,,At;) addition- cess[25).
ally requires that a unit does reorient during,. _ Before calculating the time evolution we have to specify
For this model homogeneous contributions may be introyhe exchange processes between both states. In general the
duced by a finite probability for correlated back-and-forth ¢ ientation rate of a unit is sensitive to the local structure.

jumps, hence by a finiterientational memoryOne can €aS" | et us consider one selected unit. We may distinguish two
lly see that the presence of small homogeneous Com”bunonéases. First, it is possible that due to reorientation processes

violates Eq.(5). Actually, also beyqn_d this specific model of adjacent units the local structure and hence the reorienta-
Eq. (5) can be regarded as a condition for purely heteroge:

neous relaxatiohl13]. For example, also for purely diffusive tion rate of the selected un.|t cha.nge. We use the pagssive
dynamics Eq.(5) holds and violation of this equation then exchange Second, a reorientation process of the selected

indicates some correlation of the direction of motion duringUnit itself may trigger the change in local structure so that
two subsequent time interval&3]. Hence, for many appli- after the reorlent'c_1t|on process the reon(_entatlon r_z_ate has
cations one may indeed assume the validity of &).to a changed. For obvious reasons we call this scenaciive
very good approximation. However, in order to be as strict ag§xchange
possible, the case of finite homogeneous contributions will We distinguish both exchange mechanisms by introducing
be considered too. individual exchange rateEﬁ =TI"P/2a; and Fﬁ =T1"?/2a; for
transitions from state to statej, respectively. The choice of
the denominators guarantees detailed balance. The total ex-
o _ . change ratd’; is defined ad";;=T} +I'f . The parameters
We distinguish two classes of correlation functions.entering the two-state approximation are sketched in Fig. 2.
To the first class belong correlation functions thatThis approximation is analogous to the two-state model as
contain at least one waiting time. An important membergescribed by Beckert and Pfeifgz2—24.
of this class isp(0,?,0At;,At;,At;). These correlation For givenk; and a; the value of'? is limited by the
functions contain information about the rate memory.condition that an active exchange process has to be con-
To the second class of correlation functions belongnected with a reorientation process. Herdtg<k;, which
p(0,At,),p(0,0;At4,At5), ..., which in the limit of hetero- yields '3<T"®™¥=min(2k,a,,2k,a,). In contrast td"2, the
geneous relaxation can all be expressed by the two-time co{z e of I'P is not limited a priori (however, see also Sec.
relation functionp(0;At,); see Eq.(5). nB).
Now the general question can be formulated as follows:
What is the additional information content of correlation
functions of the first class if all correlation functions of the
second class are known? For the heterogeneous limit this Now we want to determine how the populatiomgt) of
question reduces to analyzing(0,?,0At,,At,,At;) for  both states change during a time interval, starting=at,.

C. Final description of the problem

B. Rate equations and their solution

given correlation functiop(0;t) known for allt. We have to specify whether the index of the correlation func-
tions for this time interval is O or ?. Hence we have to con-
lIl. SOLUTION FOR A BIMODAL REORIENTATION sider two different kinds of rate equations. Let us first as-
RATE DISTRIBUTION sume that the experiment is sensitive to reorientations,
corresponding to the index 0. Then the time evolution of

A. Definition of the parameters ui(t) is described by

Here we analyze the simplest case of nonexponential re-
laxation where the rate distribution of reorientation rates is

Uz ug
_u —
bimodal and the present state of the unit is fully described by at

=— P -t
kiu+T %a, 7a

: (6)
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J
a2

account(expressed by the propagatsy;), whereas during
(7)  the second mixing time only exchange processes are relevant
(expressed by;;). Hence

u; u

= P
kou,+T° %8, 2ay)

The terms proportional tk; express that after one reorienta-

tion process a unit no longer contributes to the populationg(0,?,0At,,At,,Atg)= 2
under consideration. Exchange processes betwgeand

U, can occur only via passive exchange since by definition

the units belo_nging to; have not reoriented sind¢e=ty. The =_Z Xij(Atg) Zj(Aty) X (Aty) .
general solution may be written ag(ty+t)=X;;(t)u;(to), Llk
where we used the standard Einstein sum convention. The (13
propagatorsX;;(t) can be obtained analytically from diago-
nalization of the two-dimensional matrix From the structure of the general formula one can immedi-
ately conclude
—Kk.—TP P
ky—T'Pf2a,  1'P/2a, _ ®) P(0,?,0At;, Aty Atg)=Co{1—exd —(I'1p+ ) At,]}
Fp/Zal _kz_rplzaz
+coexXf — (I' 1+ I'21) Ata],

Now we can calculatg(0;t), which formally is given by (14)

2iu;(to+1). On the basis of th&; this term can be written
as 2 ;X (tu;(t) =2 ;Xj;(t)a; . Here we used that at with co=p(0,?,0At;,At,=0At;) and c.=p(0,?,0;

t=t, a fraction ofu;(ty) =a; units are in statg. At,,At,—o At3). Direct calculation ofcy and c, is
The general solution reads straightforward but very tedious. Fortunately, their values

can be fixed by a simple argument. Due to E%). we can

p(0;t) = aexp( — k1t) + aexp — kot). 9 immediately write co=p(0,0;At;,At3)=p(0;At;+At3).

In the opposite limitt,,— we know that in the case of
For I'P=0 we trivially havea;=«; andki=«;. ForT'P>0 finite exchange rates the four-time correlation function
diagonalization of the above matrix approximately yieldscan be factorized according t@(0,?,0At;,At,,Ats)

~k;+I'P/2a;. The amplitudesy; can be determined from =p(0;At;)p(0;At3) so that

the eigenvectors. The; can be interpreted as effective re- _ . )
orientation rates. Typically, a unit that is slow at a given time =P(0;Aty)p(0;AL;). (15)
reorients faster than expected from its rlaje The reason is
that it may switch to the fast state very soon and then reori-
ent much faster, yielding an effective;>k;. Note that

In summary, we have shown that it is possible to express
p(0,?,0At,,At,,Ats) in terms ofp(0;t) andI'1,+15;. In
accordance with intuition, the four-time correlation function

~ P implies T'P ) X :
xy~ky+ P28, |mp_I|esl“ 128, = Ky . contains the information about the exchange processes and
For the calculation ofp(0,?,0At,,At,,At3) it is also hence about the rate memory.

necessary to determine the time evolution during a time in-
terval that is not sensitive to reorientatiof@aswaiting time.

During this time interval the evolution is governed by the IV. GENERAL APPROACH TO THE RATE MEMORY

rate equations Our general task is to evaluate the information content of
p(0,?,0fmo.tm2.tmo) @s a typical member of the first class of
iu Uz U iu correlation functions for the given set of correlation func-
gt 2a, 2a;)dt 2 tions belonging to the second class of correlation functions
(see Sec. Il € Here we use the notatidp,; instead ofAt; in
_pl M Y2 (10  order to be consistent with the notation within the NMR
2a; 2ay/ literature. There the time intervalg, are also denotethix-

_ _ _ ing times
Here the exchange is due to active as well as passive ex- We first consider the heterogeneous limit, expressed by
change processes. The solution can be written agq.(5). Itis evident that from the application of E¢4)—(3)

ui(to+t) =Z;;(t)u;(to), with and (5), p(0,?,0mo.tma,tmo) Cannot be expressed in terms
of p(0;t). Intuitively this is clear sincg(0;t) does not con-

Zyy(t)=atazexd — (I'ip+apt], (11)  tain direct information about possible exchange processes.

For reasons that will become clear further below we split
Zi(t)y=a;—asexd — (I',+Topt]. (12 the t,; in small time intervals of lengtl\t. According to

Egs.(1)—(3) and(5), p(0,?,0fmo,tmz tmo) May be rewritten
Analogous equations hold fdf,4(t) and Z,,(t). For finite as p(0,...,0,?,...,?2,0,...,4%, ... ,At). In what fol-
I' and larget we always obtain the equilibrium populations lows At is chosen much smaller than any time scale involved

ui(tot+t)eca; independent of the initial valuag(t,). in the reorientation and exchange processes. In order to be as
For an explicit calculation op(0,?,0At;,At,,Ats) the general as possible we analyze the functions
time evolution of the units during three subsequent time inp(iq, . ...iy;At, ... ,At) with i,€{0,1,2 from now on.

tervals has to be considered. Durig; and At reorienta- Whenever the time intervals are of lenght they will be
tion as well as exchange processes have to be taken intmitted for simplicity, e.g.p(1;At)=p(1).
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A. Minimum and maximum rate memory

The first step of our general analysis is to define some
reasonable physical limits for which multitime correlation
functions can be directly expressed in terms of the two-time
correlation function. We have already seen from the analysis
of the two-state approximation that there exists a maximum
exchange ratd’ that is of the order of the effective slow
reorientation ratec;. Hence the time for which a slow unit
“remembers” that it is slow is at least of the order of
1/k4. We show that a limit ominimum rate memorgan be -4 : : :
strictly formulated in the general case. 0 5 10 15

Let us assume for a moment that it is possible to monitor t/ 1,
the time evolution of the orientation of an individual unit.

The question arises whether it is possible to predict the dy- FIG. 3. Time evolution of the dynamical state of three randomly
namical behavior of this unit during the next time stiepon selected units with time in the limit of minimum rate memory. The
the basis of its previous behavior during the time of theequilib.rium Qistribu.tion of reorientation rate; is chosen as a log-
experimentt,,,, for given p(0;t). The most simple case is Gaussian ghstrlbutlon, centerepl aro_un@l It is sketched on the
that duringteyy NO reorientation process has been observedSft-hand side. After every reorientation process the new reorienta-
Then the probabilitp, that the unit reorients during the next tion rate is chosen ra_ndomly with _approprlate probabilities in order
time step At is given by pr:[p(O;texpt) - p(O;texpt to guarantee the equivalence of time and ensemble average.
+A1)]/p(O;teyp), Wwhich for a Kohlrausch function , : ,

p(0:t)=exg —(t/7)"] is given by PO in-1in=Linsa, -0 0)

log (/1)

pr(texpt)ZBAt(TO/teXleiﬁ' (16) :p( ...,in_l,inzl)p(inzl,in+1, )/p(lnzl)( )
18

We see that apart from the trivial cage=1 the estimated In order to define the minimum rate memory it is necessary

future behavior depend; on the expgnmental_tim&. Now to localize the reorientation process, i.e., the valug, ofas
let us assume that during the experimental time at least one

; . . ) {ecisely as possible. This is the reason why the time axis

reorientation process has occurred. Let the time since the Iaﬁas to be split in verv short time intervald
reorientation process be callgd If by chancet,, is equal As  a psimple yexample we anélyzep(o 2.0)
tot,, the prolbabi-litypr depends on, as .expressed by Eg. ~p(0,0,0+p(0,1,0). From Eq. (18 we O’Btélin
(16). The estimation o, becomes ambiguous tf,,>t, . (0 1’0)’= p(0 1),pi1 0)/p(1) Since  p(0,1)=p(0,?)
The additional information about the properties before the[i &0’0) _' (0)’_ (0 0)' (1)=p(?)— (0)’_1_ ('d)
final reorientation process may influence the estimation of PL&Y) =P PLY.E)PLL)=pl)=pLb)= 1 =PI
p, in an a apriori unknown way. The condition that our and using Eq. (5 we may finally write

r . 20 — . . _ . 2
estimation has to be consistent wiplfO;t) is not sufficient p(0.7.0ALALAL) = p(0;341) +[(p(0;A1) = p(0;2A0) I/

. o : 1-p(0;At)]. Hencep(0,?,0At,At,At) can be expressed
to remove this ambiguity, but only requires thgatdepends [ .
on t,. This leads '?0 dyefine thg Iirr?it ofnirrlriiitnump rate solely on the basis g(0;t). Analogous arguments hold for

memory We require that the time correlations are as short ag\elgli r:tlegrgbasblr(t:)ée?sr;sgog$(Ili(l:élfiéﬁ "g‘f) if_i\;VB?ICne(r:]ig ?r?
possible. In the special case mentioned above this simpl y pp ' '

means that no correlations to times before the final reorlen%-{L]e limit of minimum rate memorp(0,?,0%mo,tma tmo) Can

tation process exist. Stated differently, after a reorientatimpe expressed in terms p{0;t) in a nontrivial way. The final

process no information about the dynamical history remain expression contains term0;nAt) for all values ofn=<N.

This scenario is, for example, implemented in the WeII-_?ﬁ.ane’ ftoermo corrtilaltlfcmsi Olj.'nf'.r]"f[e length attr{ehmvolved.
known continuous time random-walk models. In these mod- > €ature 1s essential for taking into account the nonexpo-

els the walker randomly chooses a new waiting time after £|ent|al|ty ofp(O_;t) as expres_se_d bﬁ<.l:
jump proces$26]. In order to visualize the limit of minimum rate memory

This intuitive definition can be easily formalized. Let a e calculated the time evolution of individual units for
reorientation process occur during théh time intervél for which after all reorientation processes the new reorientation
rate is selectedandomlyfrom the overall rate distribution. A

some given dynamical histony, ... ,i,_1. In the limit of X . i
miniml?m rateymemory the rp'y#obabili'?y lthat the dynamical rgndom choice means that the probaplllty after a reorlenta-
future can be described by the sequenga, . . . iy is in- tion process to have the rakteis proportional toa;k; , inde-

pendent of the previous rate. The proportionality to the sta-
tistical weightsa; is obvious. The factok; takes into account
that a unit in a fast state reorients more often so that a fast

dependent of the properties before tith time interval. For-
mally this condition is expressed as

o( i i1 ) plin=1j ) state has to be repopulated more frequently than a slow state
Stk VAL LS AR L L in order to guarantee detailed balance. The time of the reori-
PC. . in-1,in=1) pin=1) entation processes and the new reorientation rates have been

determined via a random-number generator. For three differ-
ent units the time evolution is shown in Fig. 3. One can
which for future purposes is rewritten as clearly see that on average a slow unit is fast after a single
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reorientation process, whereas a fast unit remains fast during
many reorientation processes. Note that, on average, half of
the time the unit is slow £> 73), which simply means that
the time average is identical to the ensemble average.

Next we discuss the limit omaximum rate memoryn-
tuitively one requires that a selected unit keeps its dynamical
properties forever. In the above two-state approximation this
corresponds td’=0. Hence, in the limit of maximum rate
memoryp(0,?,0fmo,tm2.tmo) iS independent of,,, so that

F,(tme)

P(0,?,01mo,tmz ,tmo) = P(0,?,0£m0,0,tmo) = P(0,0:tmo , tmo) - 0.4 L - -
More generally this reads 0.1 1.0 10.0
p( B ;in—luin:?lin+1! .. ):p( s ain—lrin+1! .. ')1 tz /%
(19

FIG. 4. Dependence d¥,(t,,,) on Q for 3=0.5. Note the ap-
which may be reformulated as proximate scaling of,,, with Q.

p( . 1in*l!in:l1in+l7 . )
assumep(0;t) = exd — (t/70)?]. In order to apply Eq(21) for

=p( .. in-1siney o) the calculation of(0,?,0fm0,tmz,tmo) We discretizet, in
: : : R time intervals At much smaller thanr,, yielding
—p( .. in_1,in=0ns1s---)- 20 . 0:  J™=IH
P( n-linTEinel ) 20 p(0,?, ...,?,(no,AtL, ... At,t). This expression is an
Successive application of E€R0) again fully determines the abbreviation for a sum ofterms if all indices ? are written
value of p(i;,...,iy) for a given correlation function as asum over 0 and 1. Therefore, the number of terms that
p(0;t). have to be calculated exponentially increases wyjthso that

We would like to stress that both limits can be defined@ direct numerical evaluation by successive application of
without referring to the special interpretation of the correla-Ed. (21) cannot be extended to large valued,pf. However,
tion functions as probability functions. From a formal point it is possible to devise a recursive algorithm that allows one
of view the limit of minimum rate memory corresponds to ato calculatep(0,?,0tmg,tmz,tmo) also for large values of
maximum number of factorizations of the correlation func-tmz- The algorithm is presented in Appendix A. For the nu-
tion. The correlations are as short as possible, but are stilnerical calculations below we chootgy= 7o.
consistent with the given non-exponential two-time correla- In Fig. 4 we present calculations OffF 4(tm2)
tion function. Any further factorization would automatically =P(0,?,0fmo,tm2:tmo)/P(0,0:tmo,tme) for B=0.5 and dif-
be inconsistent with the givep(0;t). Also the introduction ferent values oR. One can clearly see that the dependence
of the maximum rate memory is sufficiently general to holdon Q can be approximated by scaling, with 1/Q.

beyond the idealized picture of reorientational dynamics. For practical purposes it is unsatisfactory that
p(0,?,0fm0,tm2,tmo) iS NOt given by a simple analytical ex-
B. Intermediate rate memory pression. Let us first consid@=1. In the limitt,,—0 it is

I . . no longer necessary to divide the waiting time in smaller
For the definition of an intermediate rate memory one,

. ) ; _~""“subunits, hence one may chod®e 1 and application of Eq.
assumes that after a single reorientation process a unit wi 8) yields

probability pi, randomly (see above for its precise mean-

ing) selects a new reorientation rgteinimum rate memory P(0,?,0f 1m0, tm2 tmo) = P(0; 2t o+ tma)
and with probabilityp,,.x=1—pPmin keeps its old reorienta-

tion rate(maximum rate memopy Of course, in general this

is only an approximation of the real behavior. We introduce
the dimensionless parame®@r=1/P ;. It denotes the aver- with

+p(01110;tm01tm21tm0)1 (22)

age number of relaxation processes after which a unit has . —0(0 ot 2
forgotten its initial dynamical state. From Ed&8) and(20) p(O,l,O,’tmO,tmz,tmo)%[p(o’tm‘)) p(O.,tmo tm)]
we can write 1-p(0;tm2)
. . (23
p( .. in—n.Linsqs--2)
=(1Q)P( ... in-1,DP(Lins1, .. ) p(L) It is easy to c_hegk that also the limig,,— is correctly
_ _ reproduced, yieldingp(0;tn0)2. Therefore, one may hope
F(A-1Q)[P( - vin-1sins1s - ) that for all values of,, the choiceR=1 yields a reasonable

approximation to the true solution. F@+# 1 an analogous
application of Eq.(21) does not yield the correct limit for

(i 10ty )], 21)
It will be clarified further below under which conditions the tme—. However, having in mind the above scaling rela-

introduction of a single parameter is exact. After successivdons, the probability functions fo@+1 can be simply ob-
application of Eq.(21) p(iy, ... .y) can be expressed in tained by scalind,,, with 1/Q. Hence we may approximate

terms ofp(0;nAt) with n<N. 0.2 07 t ~0(0: 27+t ]
Now we are in a positon to calculate P(0.2.0i70,tmz  70) = P(0; 270 + tn2 /Q)

p(0,?,0tm0,tm2,tmo) for a given value ofQ. As before we +p(0,1,0;79,t2/Q,70), (24
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evident, mainly because two different exchange rates are in-
cluded in the two-state model whereas the rate memory de-
scription only contains a single rate memory paramé&ter
Equation(21) describes the time evolution of the popula-
tions during thenth time interval. This may be compared
with the explicit calculation on the basis of the two-state
approximation. Since the time interval is infinitesimally
small the calculation for the two-state approximation can be
directly performed. The explicit calculation is deferred to
oal . o - Appendix B. It turns out that for the two-state approximation
T o 1.0 10.0 p(0,?,0tm0 ,tm2,tmo) IS indeed fully characterized by a
tm /1, single paramete® as introduced in Eq21). It is given by

[P+y2 P42

F(tme)

FIG. 5. Comparison of the exact res@olid line) for F () Q= Pra- T (26)
with the approximate solutiofdashed lingin Eq. (23) for 3=0.6
andQ=2. with
where the last term is approximated by Eg3). In Fig. 5 (47 1= 1 N 1 27
this approximate solution is plotted f@=2 and 8=0.6 Y T 2a1ky  2a5k,”

together with the exact solution. Both curves agree within a
few percent. Hence, for practical purposes it is sufficient toEquation(26) connects the general description of the rate

estimatep(0,?,0tmo.tm2.tmo) Via Eqs.(23) and(24). memory of Sec. IV with the strict calculation of the two-state
approximation.
C. Generalization to the case For I'®=y? we getQ=1. Since this corresponds to the
of finite homogeneous contributions limit of minimum rate memory, fof'®= y? a unit randomly

) . . selects a new reorientation rate after a reorientation process.
We extensively used E@5) in order to obtain the results This can be also shown explicitly. For a random choice of a
presented above. For real systems and for arbitrary correldayw,  reorientation  rate (see the discussion in

tion functions this relation may be violated, because of aggo. B) the probability p, that the new reorientation
finite orientational memory. Then the correlation functions e is k; must be proportional tak;, so thatp;=a;k,/

p(0,0;At,,At,),p(0,0,0At,,At,,At3), ... can no longer
be expressed vig(0;At;). For a strict calculation of
p(0,?,0tm0,tm2,tmo) Via successive application of E(RL) obtainsI 2= 2
one has to know alp(O, . . .,0). Inprinciple this strict cal- Y-

culation can be performed. However, two levels of approxi- We briefly sketch a more intuitive derivation of E@6).
mation are possible. First ER4) can be used in its gener- As already mentioned above, H@1) expresses the fact that

alized version a fraction 10Q of_units tha_lt reo_rient during a given time in-
terval forget their dynamical history, whereas the rest keeps
P(0,?,0tmo,tm2,tmo) ~ P(0,0,08mo s tmz/ Q. tmo) its present rate. The exchange rate is giverlbyl'P+ T2,
: _ ) 2 This rate has to be smaller by a factor@fas compared to
[P(03tmo) = P(O.0tmo tma /Q)] _ the fictive valuel'P+ 92 of the total exchange rate for which
1-p(0;tm2/Q) every reorientation process would be connected with a loss
(25)  of rate memory. Therefore, we expdct+ y*=QI", which
is equivalent to Eq(26).
Here only the correlation functions p(0;At,), Specializing to the limik; <k,, Eq.(26) may be approxi-
p(0,0;At,,At,), and p(0,0,0At,,At,,At3) are involved. mated as
Actually, this approximation has been used in the parallel P+2a.k, 2aix
work of Ref.[13], yielding very good agreement between Q= L P at (28)
simulated and estimated four-time correlation functions. A r r
more drastic approximation is the direct use of EB4)

p ~ 1 I -
which for the analysis of experimental data may be the onl)y\’h.ere we ulse:“ /2ﬁ1+ kll x1. Hence Wﬁ obtain éhe Inter d
feasible procedure. esting result that the relevant quantity that can be extracte

from the four-time correlation function is the ratio of the
slow effective reorientation rate and the exchange rate.

Surprisingly, Eq(26) also shows that the minimum value
of Q is smaller than one and is given by

A. Two-state case 2 1

First we show that Eq(21) can be reproduced on the Qm‘“_l“a'max_ 1+a;kq/koa,
basis of the rate equations of the two-state approximation.
From this comparisorQ can be expressed in terms of the Here we assumed thatk;<a,k,. If T'®>»? the exchange
parameters characterizing the two-state approximafs@e among the two states as a consequence of a reorientation
Sec. Ill). A priori the equivalence of both approaches is notprocess is larger than in the case of a purely statistical redis-

(a;ki+ayks,). Then the active exchange rdtg; from state
2 to state 1 is given bi,p,. FromI'@=2a,I'$; one directly

V. RATE MEMORY DESCRIPTION VERSUS
EXPLICIT SOLUTION OF RATE EQUATIONS

(29
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tribution. Hence we are in the regime of anti-correlations.k_,,. In this case the four-time correlation functién may
From Eq.(29) one directly obtain®,;,>0.5. It can be eas- be approximated by some val@= 1, which now is a mea-
ily checked that a Kohlrausch law witd=0.5 can be very sure for the loss of dynamic memory by a single reorienta-
well approximated by a biexponential with;~a, and  tion process. Forkne,—Kqgq One would expectQ— o,
Kolk1=13. For a;=a, one obtainsQu,i,~k,/(k2+ k1),  whereas the limit in whickk,e,, is uncorrelated td,y one
which for the example chosen above is 0.93 and hence vemgcovers the minimum rate memory.
close to 1. Therefore in practice the relatiQes 1 is approxi- Even for the worst case, for which the exchange rates,
mately fulfilled and the regime of anticorrelation can be ne-passive as well as active, deviate from E8Q) in an arbi-
glected. In any case, it is hard to think of a physical mechatrary way, one can argue that the interpolation by a single
nism that should lead to such kinds of anticorrelations. parameterQ is still expected to be a good approximation.
For the two-state approximation we may explicitly checkFor a given value of,,, the heterogeneous distribution can
the quality of the approximationi23) and (24). Choosing be formally split into two parts, defined b<1/t,,, and
k1<1htme<k, and @; = a,=1/2, the exact solution can be k;=1#,,,. The correlation functiorp(0,?,0tm0tmz,tmo) iS
written asF4(ty) = (1/2)[1+exp(—2Itp)] [see Eq.(14)].  sensitive to exchange processes between the slow and the
In contrast, after a short calculation the approximati®8  fast part and not to exchange processes within one part.
readsF,(ty) = 112 —exp(—kdmp/Q)]=112—exp(—T'typ)].  Since the rate memory description is exact for a two-state
Both functions are very similar for all values tf,. How-  case we expect that E(R4) is always a good approximation,
ever, this example also demonstrates that the exact solutidndependent of the validity of Eq30). This can be con-
of the two-state approximation can be obtained only if thefirmed for a model system, for which E€0) does not hold,
time intervalt,,, is split in many small time intervals and the but p(0,?,0f0,tm2.tmo) Can nevertheless be perfectly ex-
four-time correlation function is calculated numerically pressed via Eq(24) [27]. Invalidation of Eq.(30) rather

along the lines described in Sec. IV. leads to a dependence @fon the choice of,,,. Experimen-
tally, it turns out for ortho-terphenyl that this dependence is
B. General N-state case very small[10].

The arguments of the preceding paragraph might suggest
approach exactly describes a genexbabtate model. Per- that the crossover between both limiting regimes of the four-.
&|me correlation function can be described by a single rate;

{rc]) ernpgeid?s I(|:3u,la}:|ocr;:]n S 2 a(l:cr)]ge{;g dthtehg? Ig)t:l;ﬂlc;/n Sr:gztrantfesee Eq(.14). However, this_ is in d!sagreement vyith the actual
condition cglculatlon for a b_roa.d. distribution of rele}xanon ra}(e
Fig. 4), showing significant nonexponential behavior. The
Ap_ap reason is that in contrast to the two-state approximation,
P =T kiak;/2, (30 which was the basis for E¢14), the general approach takes
into account that both regimes;& 14,0 and kj=1/,,)
contain more than a single relaxation rate.

First we clarify under which conditions our rate memory

with some constanifg andT'?, the system can be described
by a single rate memory paramet@y which then is given by

VI. DISCUSSION

I'e+ve
= rP+ra 31) It has been shown that the rate memory approach is ap-

propriate to quantify the outcome of the four-time correlation

Here we defined function for a given two-time correlation function. The main
advantages of this approach is tiigtthe similarities of the

> mathematical structure of the two-time and multitime corre-
Y= i (32 lation functions are fglly exploitedji) the analysis is free of
E ak any model assumptions and the value @fhas a simple

i physical interpretation(iii) the role of the minimum rate
memory Q=1 is clarified, (iv) there exist simple formulas
Equation(30) simply means that units with longer reorienta- that allow one to estimate the four-time correlation function
tion rates keep their rates for a longer time. Note that for gor given two-time correlation function and rate memory pa-
two-state approximation one has to identiff &  rameterQ, and(v) homogeneous contributions can easily be
=T'2P/ak,ak, and (y*) " 1=(y2)"Ya;k,a,k,. It is easy taken into account. Alternatively, one can simultaneously
to check that Eq(31) then reduces to Eq26). analyze the two-time and the four-time correlation function
In the case that exchange processes are always connectey a special model involving reorientation ratesand ex-
with reorientation processes, i.e., in the limit of purely activechange rate§; [10,23. In order to keep the number of free
exchange processes, the validity of E§0) has the same parameters limited the exchange rates may be parametrized
simple interpretation as in the two-state case. On averagelike, e.g.,I';j=Io(kik;)“ with some positiver. Using these
segment changes its rate aft@rreorientation process¢€) rate equations, a simultaneous fit of the two-time and the
given by Eq.(31)]. Here the limit of minimum rate memory four-time correlation function may be performed. However,
simply means that every exchange process to an arbitragll above-mentioned advantages of t@edescription get
new state comes together with a reorientation process. In refist.
systems one might image that the new faig, after a reori- For example, the rate memory approach would predict
entation process is still somewhat correlated with the old rat¢hat for a given two-time correlation function in the limit of
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large I' g the numerical solution of the above model yieldsas p(0,?,0fy0,tm2:tmo) Can be expressed in terms of
identical four-time correlation functions independent of thep(0;At,),p(0,0;At;,At,), .. .. We have shown that it is
parametera. This solution would be identical to th@=1 possible to find a reasonable interpolation between both ex-
curve. Without having analyzed the underlying structure oftreme limits, thereby introducing a rate memory parameter
the present problem, this observation might come as a suf. The value ofQ counts the number of relaxation processes
prise. This also means that f@~1 a fit of the four-time after which a unit is uncorrelated to its initial dynamical
correlation function does not discriminate between differentstate. We have formulated the problem such that the rate
choices for thel';;. The situation changes for a situation memory parameter can be directly extracted from the four-
where the rate memory parame@isignificantly depends on time correlation function for given two-time correlation
tmo. Then the numerical solution of rate equations may in-function. The experimental relevance of this work is demon-
deed give some additional hints about the precise deperstated in the following papdd9]. For the two-state approxi-
dence ofl';; on k; andk; and hence about the nature of mation the interpolation procedure is exact. Although the
fluctuations within the heterogeneous distribution of relax-precise physical meaning of the rate memory still has to be
ation rates. clarified, one may already say that for glasses it is related to

The analysis of this work quantifies multitime correlation the cooperativity of the structural relaxation.
functions in the case oflynamical heterogeneities. The The next theoretical step is to elucidate the relation of the
analysis breaks down for the casestidtic heterogeneities. A rate memory to microcopic properties of glasses and to check
simple model is an ensemble of particles diffusing in a hetthe predictions of theories of the glassy state with respect to
erogeneous environment. For this example a description dhe rate memory. We hope that this may be initiated by the
the exchange in terms of constant rates is no longer possiblpresent work.
Rather the probability of an exchange process is related to
the position of a particle. Hence the stochastic approach of
this work inherent in Eq(21) breaks down. ACKNOWLEDGMENTS
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This clearly demonstrates that the value@fis somewhat APPENDIX A

_rela_ted to the locality of_the dynami_cs. Whenev_erthe dyna_m- We want to show how to calculat(0,?,0t,0, o tmo)

ics is local, the dynamics occurs in a rather fixed potentlifn the basis of Eq21) in a recursive Way'if'themw’ari?ir;gn}ime

that is constant for times much larger than the dynamic me IS divided intoR andt,, into S identical time intervals
time scale. In contrast, the dynamics around the glass transK” A< mentioned in the text the direct calculation of
tion is very delocalized and is described by very small vaIue%((') 2 0to.tma t) FEQUIrES th,e evaluation of2terms
of Q [9]. Hence we may tentatively say th@tis related to e oy ma, mo) > e :
the cooperativity of the dynamics. As will be shown in else—WhICh 's prohibitive in the limit of large waiting times,,.

where, this can be explicitly shown for a generalized Fred—Let us define

rickson mode[27,29. A(MN)=p(io=0i1=?, ... imn=?im1=0, ...,

In summary, we have analyzed the information content of ; -n-
multitime correlation functions as compared to the standard Ximin=0itmo, AL - . AD). (AD)
two-time correlation function in the case of dynamic hetero-
geneities. The limits of minimum and maximum rate Our goal is to calculateA(R,S)=p(0,?,0tmo,tmz2 tmo)-
memory can be uniquely defined without any model assumpNote that theA(O,n)=p(0;nAt+t,g) are given. Factoriza-
tions. In these limits the multitime correlation functions suchtion of A(m,n) aroundi,,=1 on the basis of Eq21) yields

[P(O5tmo) —A(M—1,1)][p(0;nAt) —p(0;(n+1)At)]
1—p(0;At)

A(m,n)=A(m—1n+1)+(1/Q)

+(1-1Q)[A(m—1n)—A(m—1n+1)]. (A2)
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Hence A(m,n) can be calculated just on the basis of can be performed for the other terms, yielding
A(m—1,1)A(m—1,n), and A(m—1,n+1). Starting from

A(0,0),...,A(OR+S), one may first calculate S1=At[Kyr +T%(rp/28,—14/2a,)]

A(1,0),...,A(1,R+S—1). Continuing this procedure, one for p( ..., 1i ) (B1)

finally arrives atA(R,S). The number of steps is of the order mnmh Tl '

of R(R+S5)/2 and hence depends only algebraically Rn s;=At[ksa;] for p(in=1ji,:1,...), (B2)

Therefore, this algorithm allows the numerical determination

of p(0,?,0tm0,tm2,tmo) for all relevant values of,. s;=ry for p(...inc1,insty-..), (B3)
Our task is to calculate the different terms of E2l) for for p( ... in_1,0n=0jps1,...). (B4)

the two-state approximation and finally to compare the left- ) ) _ o

and the right-hand side in order to check whether the ratdlote that for the calculation qf(i,=1in.1, .. .) theinitial

memory can be expressed by a single paraméteThe  POpulationsr; are given bya;. The second kind of terms
value of At is chosen such thaktl'<1 andAtk,<1. For  P(....in=1) involve the total probability after theth time
given indicesiy, .. .,i,_; one might calculate step for step Step. Let us calculatep(i,=1). Integration yields
the population of the two states by direct integration of theS1=At[kia;], hencep(i,=1)=s;+s,=At[a;k; +azk;]. In
rate equations. Note that faktk,<1 the integration over Summary, one obtains

At can be directly performed. However, since ER1) is .

supposed to hold for ally, ... ,i,_; and for all values of P(in=1)=At[ark; +azk,], (B)
n, it has to be valid for arbitrary populatioms andr , of the
two states after thenf1)th time interval. Furthermore, no
restrictions are imposed on the indics. 1,ins2, ...  Summing up the terms of the right-hand side of E2l)
Therefore, the individual populatiors after thenth time ields

interval have to be identical on the left- and the right—handy

p( ...,in,l,inZ1)=At[l‘lk1+l‘2k2]. (BG)

side of Eq.(21). Here we check that fo® as given by Eq. a1kq(r1kq+r5ky)
(26) and for arbitrary populations; this condition can be S1right/ At=(1/Q) K.a:+Koa +(1-1Q)
fulfilled. 1T
Two different kinds of terms have to be distinguished. of T2 rq
The first kind of terms are of the form Xk =T 2a, 2a,)| (B7)

p(....ine1s -« -4in)- As discussed before, we have to cal-

culate the populations; after thenth time step. For rea- The left-hand side of Eq21), hences, i, is given by Eq.
sons of symmetry we can restrict ourselves to the calcu¢Bl).

lation of s;. As an example let us deal with the  Solving the relatiors, jei= S rign: fOr Q yields, after some
term p(... . n_nLine1s - )=PCe o1, Pina gy o e k) lengthy but straightforward algebra, the expression given in
—p(....in=1.0,ins1, - ..). Thepopulations before thath  Eq. (26). Since the value of does not depend on thg we
time step are;. According to our analysis of Sec. Ill, we have proved that it is indeed sufficient to introduce a single
have s;=Z;;(At)r;—X;;(At)r;, from which we obtains, parameterQ in order to describe all possible probabilities
=A{T(ry/2a,—r1/2a;) —[ —kqr1+TP(r,/2a,—r,/2a;)]} p(i,, ...,in) and hence the functiok, for the two-state
=At[kyry+13(ro/2a,—r4/2a,)]. Analogous calculations approximation.
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